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Abstract—We study the bending of a thin plate with rapidly varying thickness, for example one
with rib-like stiffeners or perforated by small holes. We obtain a fourth-order equation for the
midplanc displacement, using an asymplotic analysis based on three-dimensional lincar elasticity.
The coefficients of this equation represent the constitutive law relating bending moments to
midplane curvature; they are explicitly determined by the plate geometry. Our analysis
distinguishes between three different cases, in which the thickness varies on a length scale longer
than, on the order of, or shorter than the mean thickness.

1. INTRODUCTION

We study pure bending of a linearly elastic plate with rapidly varying thickness. We restrict
our attention to symmetric plates, and to loads transverse to the midplane. Our method
is that of asymptotic analysis, using a multiple-scale approach[6, 28, 41] as the plate
thickness tends to zero. The fine-scale structure of the thickness variation is assumed to
be periodic or quasiperiodic; the model encompasses, for example, plates stiffened by one
or more families of ribs, or perforated by finely spaced holes.

Let ¢ denote the mean plate thickness; we suppose that the thickness varies with length
scale €%, 0 <a < o0, and that the load per unit mid-plane area is ¢>F(x,, x,). As ¢ 0, we
find that

(a) The limiting mid-plane displacement w(x,, x,) satisfies a fourth order equation

2 02 0w
e M5 = | = F. 1.1
. &?;‘, -1 6x,6xﬁ( prd 5x,5x,) a.n

(b) The tensor M,;,,(x,, x,) depends explicitly on the plate’s geometry, through certain
auxiliary functions which may be computed numerically.

(c) One can estimate the stress in the three-dimensional plate, with error o(e) as ¢ 0.
The formulas for M, and for the stress in the three-dimensional plate depend critically on
whether a < 1,a = 1, or a > 1. In a sense, therefore, we are presenting not one model but
three separate ones, for geometry variations slower than, on the order of, and faster than
the mean thickness. When a < 1, our model is equivalent to “homogenizing the Kirchhoff
plate equation”; when a > |, it corresponds to “homogenizing the rough boundary, then
using Kirchhofl' plate theory”. The case a =1 apparently has no such simple inter-
pretation.

Plates with densely spaced stiffeners have recently attracted much attention in the
literature on structural optimization[11-13, 31, 32, 39]. One expects a plate with properly
designed stiffeners to be more efficient in the use of material—i.e. stronger per unit
weight—than any uniform or slowly-varying structure, in certain design contexts. Several
authors have demonstrated this assertion, using specific models for the behavior of
stiffened plates[11, 12, 25, 33]. These developments point up the need for a systematic study
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of variable-thickness structures, based on three-dimensional linear elasticity; the present
work represents a step toward that goal.

Many authors have used asymptotic analysis to derive plate and shell theories, see
e.g.[14, 19-21, 26, 40], and it has been recognized that rapid thickness variation can be
allowed if the expansion is done properly{26]. The homogenization of plate equations, on
the other hand, has also been studied extensively[2, 3, 12, 13, 16, 17, 30, 32, 34, 35, 39].
The methods of this paper are a blend of these two approaches. Our work is closely related
to that of Caillerie[8-10], who has studied flat plates with periodically varying com-
position, using a scaling that corresponds to our g = |.

The analysis presented here is purely formal. We feel confident, however, that our
model represents the correct limiting behavior of the three-dimensional solution, under
modest regularity hypotheses on A(x; 5). A convergence result of this type is proved in[23]
for the a = 1 scaling, in case h = h(n) is purely periodic and the plate edges are clamped.
The corresponding assertion for a homogeneous, flat plate is, of course, well known{4,
36-38, 42], and an analogous result is proved in[10] for the problem studied there.

We wish to thank George Papanicolaou for sharing generously both his knowledge and
his enthusiasm in many discussions related to this work.

2. PRELIMINARIES

This section establishes notation, describes precisely the problem we consider, and
summarizes briefly our method.

We shall write x = (x,, x,, x;) for vectors in R®, and x = (x,, x;) for vectors in R? Latin
indices will range from 1 to 3, and Greek ones from I to 2; the summation convention
applies whenever indices are repeated. We write d; = d/0x; and 0; = 8%/0x0x;.

(a) Linear elasticity
Associated with any displacement ¥ = (u,, u,, u;) of R’ is its strain tensor

1
e«'j(‘.‘) = 3 (6¢'"j + aj“i) 2.n

and the corresponding stress tensor
0,(u) = Byerdu). 22)
The fourth-order tensor By, satisfies
By = Bjay= By = By (2.3)
we assume the elastic energy
Byegen (2.4)
is positive definite on symmetric tensors.
We shall always assume that the horizontal planes are planes of elastic symmetry. This
means{29]
By =0, Byu=0, 2.5)

50 that Hooke’s law (2.2) becomes

aaﬂ = Buhﬁeyé + B,ﬂ”e”
Oy = 28«3#3953 (2.6)
033 = Byl + Bynens.
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We define

E‘ 6 = BIM -— M’ (27)

B 3133

according to standard Kirchhoff plate theory, the rigidity tensor associated to a flat plate
with (rescaled) thickness 24 is

2 .~
M,ﬁw = ShJB‘lM'

(See Section 2e).
For an isotropic material with Young’s modulus E and Poisson’s ratio v, the nonzero
components of By, are

_ E(1-v)
W4 v)( - 2v)
Ev
e [ #] 2.8
Bu=troa=m ' 28)
1 E L
Bu=Bu=31y '
(no summation convention). In that case
o - E
B =Bpy= (_l——_vT)
. o ~ ~ 1 E
By = By = By = By, = 27 Tv 2.9
Ev
Enzz =bhpu= m
(b) Plate geometry
The plate geometry is determined by
a domain Q in the x,—x, plane, representing the midplane; (2.10a)
a real parameter a, 0 < a < o0, determining the length
scale of the thickness variation; and (2.10b)
a function A(x; n) = 0, defined for xe{} and neR> (2.10¢)

The three-dimensional region occupied by the plate is
R(e) = {x:x€Q, |x;| < eh(x; X/}, .11

where ¢ is a small parameter.
We allow A(x; 3) = 0 for some values of (x; ); hence the three-dimensional plate may
have holes. We also allow A to be discontinuous. We assume, however, that

For each xeQ), {#eR?: k(x; 4) > 0} is connected; and (2.12a)

h is bounded away from zero on the set where it does (2.12b)
not vanish, i.e. h(x;9)>0=h(x;5) > c, for
some constant ¢ > 0.
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A further hypothesis is needed concerning the dependence of 4 on 5. We shall focus
in Sections 3-5 on the simplest case, that of locally periodic structure:

h(x; n) is periodic with period 1 in #, and #,. (2.13a)
The case of “*quasiperiodic” local structure will be addressed in Section 6; by this we mean:

h(x;n)=H(x;0,(x) n;...;adx) n), for some
functions a{x)eR*(1 <i < N)and H(x; 1;,...,1,) >0, (2.13b)
H being periodic in ¢, .. ., ty with period 1.

To clarify the scope of the latter hypothesis, consider a plate with N families of ribs,
each having smoothly varying density and direction. Suppose g{t), |¢| < 1/2, represents the
profile of a single rib in the ith family; let [a,(x)| represent the relative density of the ith
family at x, and when «; # 0 let a,-/]u,-] be directed orthogonal to the ribs. One can model
this situation by extending g(¢) periodically and taking

H(,...,ty)= lrggXNgAtf)

(2.14)
h(x;n)=H(a, n;...;ayn).

We shall denote by 9, R(¢) and d_ R(¢) the upper and lower faces of the plate. If A(x, )
is continuous then

0+ R(€) = {x:xeQ, xy = + eh(x, x/e)}; (2.15)

if h is discontinuous than 9, R(¢) has vertical parts as well.

We assume for simplicity that the plate is homogeneous. (The case of varying material
composition can, however, be treated using the same method.)

It will often be necessary to average a periodic function g(x;y) with respect to n:

i P P2
ﬂg(X)=;l;;_( f g(x;n) dn, dn,, (2.16)

2 J0 Jo

where p, are the periods of g(x; -). In what follows, all functions will have period 1 unless
explicitly stated otherwise.

(¢) Loads and equations of equilibrium

We suppose that the plate is loaded along its faces 9 ; R(¢) by forces ¢3(0, 0, f, (x, x/¢%)
per unit midplane area, where

f+(x;n) and f_(x; n) are defined for xeQ and yeR?,
and are periodic or quasiperiodic in #; also, (2.17)
Sfo(x;m) =f_(x; n) = 0 whenever h(x; ) =0.

The scaling of the load has been chosen so that the vertical displacement of the plate
remains bounded as ¢ —+0. We allow the load to vary rapidly, since in practice one might

load a ribbed plate just along the top of the ribs. Only the mean force per unit midplane
area

F(x)=#(f.+/) (2.18)

will appear in the limiting equation for the midplane displacement.
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The equations of elastostatic equilibrium for the ¢-dependent three-dimensional plate
are

3lo;w=0 in R(e), i=123, 2.19)

where o;(u) is given by (2.2). The boundary conditions on the plate faces are

0 j =1
o= {é 3fi Im‘i : =3 on 9, R(e), 220
where n° is the outward unit normal vector, i.e.
oh oh ah oh
dutptanf g glma 1l T el-a
[ns|~'n ( eax‘ € . eax2 ¢ o, + l) 221

whenever h s differentiable. We postpone the discussion of boundary conditions at the plate
edges until the end of Section 2(d).

(d) The method

Our goal is to find a limiting “effective equation” for the vertical displacement u,‘ as
¢—0. We use a variational approach, with the well-known method of multiple-scale
asymptotic expansions[6, 41] as motivation. The following discussion applies only to the
locally periodic case (2.13a).

One begins by postulating an ansatz for u*

k

mu*= Y euf(x; x/e% xife). 222

inl

"

Each u® = y"(x; y; £) is defined for xeQ, 5 eR?, |¢| < h(x; 1), and is periodic in #,, n,. The
first term in (2.22) has the form

e u®(x; n; &) = (0,0, w(x)),

where w, the limiting vertical displacement, is an as yet undetermined function of x.

The remaining exponents ¢,> 0 and functions ¥ are chosen differently depending on
whether a <1, a=1, or a>1. In each case, the formulas have been obtained by
substituting the formal expansion (2.22) into (2.19) and (2.20), collecting terms with like
powers of ¢, and solving successively for the functions u®. Thus (2.22) represents the first
few terms of a full asymptotic expansion for u‘; we keep only those terms that produce
strains of order ¢. The procedure just described is now standard; we shall therefore present
only the ansatz so obtained, omitting the details of its derivation,

The fourth-order “effective equation” for w is obtained as follows. One can write the
strain of ¥* in the form

ey(u*) = eXP(x; X[e% x3/€)0,5w + 0(€), (2.23)

where X% (x; n; £) are explicit, g-periodic functions depending only on the plate geometry,
and

Xif = Xk (2.24)
Substituting (2.23) into the energy expression

% J‘ Buefut)efu*)dx — ¢’ f u*(f, +/-)dx,
Ric) a
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integrating with respect to &, averaging in », and discarding terms that are o(¢’), one is
led to consider

1
563 L M 4,50,5w0,w dX — c3f wF dx, (2.25)

44

where F is given by (2.18) and

+h(x; )
M ps(X) = M (J- B,,*,X;”XI‘} dé ) (2.26)

—hixix)
The function w must minimize (2.25), i.e. it satisfies the effective equation
O,f(M yp,s0,sw) = F in Q. (2.27)
Once w is known, (2.23) gives an approximation for the strain of u‘ in the three-
dimensional plate, with error o(e).
Note that by (2.3) and (2.24)
Mgy = Mppy = Mygs, = Moy, (2.28)
also, since the elasticity tensor By, is positive definite,
M opstigts 20 (2.29)
for any symmetric 2 x 2 tensor #,,, and

Mdﬂ)’&tuﬁlyé = Oéx;ﬁtaﬂ =0 all i,j. (2-30)

Equation (2.27) must be combined with appropriate boundary conditions for w at 9Q.
At a clamped edge, the three-dimensional solution satisfies

u'=0 on C(e), (2.31)
where C(e) denotes the plate edge
Cle) = {x:xe0Q, |x;] < eh(x; x/e9)}. (2.32)

The boundary conditions for w are obtained by imposing (2.31) on the leading terms of
(2.22):

w=0, ndw=0 ondQ. (2.33)
At a simply-supported edge, ¢° satisfies one displacement boundary condition
uy' =0 on Cle), (2.34a)
and the complementing “natural” conditions
o.(uIns=0 on C(e). (2.34b)
The corresponding conditions for w are the analogue of (2.34a),
w=0 ondQ (2.35a)

and the complementing “natural” boundary condition for the variational problem (2.25),

Mﬂ 56}.‘;}"" Tl hg= 0 ondQ. (2.35b)
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Similarly, at a free edge w satisfies the full set of “natural” boundary conditions for (2.25),

M,Ma.ﬂ;w Ny n,, = 0 (2.363.)
5,(M,,M(7,,;w)n,, + T,B,(M,ma.,6w n, Tﬂ) =0. (2.36b)

The vector n = (n, n,) in (2.33)-(2.36) is the unit vector normal to 4R, and t in (2.36b)
is the unit tangent vector along 99, counterclockwise.

2(e) Slowly-varying plates

To clarify the method, we sketch briefly how it applies when the plate thickness varies
slowly—i.e. when h =h(x) does not depend on . One recovers Kirchhoff plate
theory([l, 38] in this case.

The appropriate form for the ansatz (2.22) is

1B
*=( —x,0 8
u (x, W, — X30,W, w+233333

(x,)’a,,w) 2.37

One computes that (2.23) holds with

XeP(x; €)= ~ &85 + & "”6”

i
B 3333

using the notation

i _ 1 if(i,j)=(k,!) as ordered pairs
ok = {0 otherwise. (2.38)
It follows that
2, ~
Meprs = 3 (%) - By, (2.39)

where B, is defined by (2.7).
For the isotropic constitutive law (2.8), substitution of (2.9) into (2.39) leads to the

effective equation
a,,[o(a,,w o 6,‘Aw)] =F

D=

where

h(x
3(1+ ) ).
3. THE CASE a<l1

Suppose (2.13a) holds, i.e. A is periodic in #, and a < 1. The mean thickness of the plate
is then much smaller than the length scale of the thickness variation.
For the duration of this section only we define

Q(x) = {neR*:h(x; n) > 0}. &R))

The ansatz for a<1 depends on auxiliary n-periodic functions ¢*(x;y)
(@, 8 =1,2; ¢ = ¢*). They satisfy

az ( 35 az¢cﬂ

el a”pa” a) a"yané

g ( 3B sup) 3.2)
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in Q(x). If 8Q(x) # 9, the boundary condition there is the natural one corresponding to
the minimization

2 2
mm Jl[h B 0 d’ 0

yopo A A 3’1@% anpa”” (¢ + 'Ia'lﬁ):l (33)

the minimum being taken among y-periodic functions. One verifies easily that ¢ exists
and is unique on Q(x), up to an additive function of x. Note that x enters (3.2) and (3.3)
only as a parameter,

The ansatz (2.22) for this case is

0
“v* == x3avw —€°X; 5;1“ (¢ “’)auﬂw - Ez"x;a:,(¢'ﬁa¢w)
bg

| B 9 [ (34
* 24 af - 2 233y - af
u*=w 4+ e%Pp%,w + 3 (x3) _Bsm ———-—amam (2 naMg + ¢ )6,,w.

Recall that d,=0/dx,; the right side of (3.4) must be evaluated at y =x/c* after
differentiation. One computes that (2.23) holds with

X3 = -éii—(ln n +¢“")
onon;\2°"°
X =0 (3.5)

ani 92 (] uﬂ)
Mg+
$= g By 0,05 \2 ety + ¢

Substituting (3.5) into (2.26), we obtain

M ps(X)= M 2]138 @ (] ¢ | —— & | + @7 (3.6)
afiyd X)= 3 Aups a a ﬂanﬂ a a 2’77’15 . .

By Green’s formula, (2.16), and (3.2),

62¢aﬂ 62¢y6- [ - 62¢y6]
M| W, , = — 4| BB, ;
[ “e0 G20, On, oM, % o ,on,

thus (3.6) may be rewritien

2.6 48
M ps(X) = JEME,M [2 1B, A ] W)

on,on,

If h(x; ) does not depend on #, then ¢* is independent of y, and (3.7) is identical with
(2.39).

Hypothesis (2.12) implies that M., is positive definite. Indeed, if £,5 is a symmetric 2 x 2
tensor and M, pt.at,s = 0, then X3§1,, =0 by (2.30), whence by (3.5)

2

aﬂyaﬂé

Since ¢ is n-periodic, (2.12) and (3.8) imply ¢, =0 (3,6 =1,2).
The same effective equation (2.27), (3.7) is also obtained if one homogenizes the
standard plate equation (2.27), (2.39), see[17].

= (%1 g) = — 15 (3.8)

4. THE CASE a=1

Suppose h is periodic in 5 and a = 1. In this case the thickness varies on the same scale
as the mean thickness.
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The following conventions apply to this section only. We shall write n; instead of ¢
for the rescaled vertical coordinate xy/e. If ¢ = (@), ¢, ¢3) is a function of n = (n;, 1, 1)
we define

ad’x a¢1
E)=3(+ 5 “

(@)= ByEild)-
We denote by Q(x) the rescaled periodically-varying “plate” with thickness A(x; -)
0(x) = {n:|m| < h(x; m}; 4.2
d,.Q(x) and d_Q(x) represent its upper and lower faces, i.e. (when A is continuous)
0,0(x)={n:ny;= th(x;m)};
and y(x;n) is the outward unit vector normal to 3, 0Q(x).

Theansatzfora = 1 depends onauxiliary functions ¢ *(x; n) (e, = 1,2;¢'2 = ¢*')which
are periodic in #, and »,. They solve

d .
— 2,-,-(@“”) =0 in Q(x), 4.3)
on;
with boundary conditions
_ By, i=1,2
Ly = { 0 i=3 .4

on d,Q(x). One verifies by a standard variational argument that ¢‘5 exists and is unique
up to an additive function of x. Once again, x enters (4.3), (4.4) only as a parameter
determining the geometry of Q(x).

The ansatz (2.22) for this case is

u* = (-— X30,w, — X30,w, w +1 uf%3 (x,)za,pw) + 2¢(x; x/€)d,pw. 4.5)

2B 3333

One computes that (2.23) holds with

X% = —mdf+ E,(9%)
X‘,-'g = E;.a(‘f"ﬁ) (4.6)

B
X =n B«ﬂss + En(¢*),

0% being defined by (2.38). Substituting (4.6) into (2.26), we obtain

My = M [J (ﬂs)zﬁum d’h] - M [j‘ 'l:g»‘\mEiu(‘l’ ) d'h]

- MA [:j- ’?Jﬁqﬁugip(? ] d’?sj} + H [J.Eu(? “’)Eij(?w) d’!s:] @7

each integral being taken over the interval |n,| < h(x; ). By Green’s formula, (4.3)-(4.4),

and (2.16),
Jt[ j E,(6)E,(¢™) drb} - JU»:,EWEM@*) daa], 8)
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therefore (4.7) may also be written

2 .. "
M5 = M [3 h JBaﬂyé] - M [fﬂsBanauEau(?yé) 73]— (4.9)

If h(x; y) is independent of », then 4;7" is independent of », and coincides with (2.39).

Hypothesis (2.12) assures once again that M,g,(x) is positive definite: for any 2 x 2
symmetric tensor f,, we know from (2.30) that M1, =0 implies X¥1,=0
(v,6 =1, 2); in that case

Ey,(@'ﬁt,ﬂ) = M3 (4.10)

By (2.12), the slice Q(x) N {n; = ¢} is connected for ¢ % 0; and by (4.10) ¢*¢,, is a periodic
function with constant strain on each slice. It follows that

Ei¢¥t)=0 7,6=1,2

for |n;) sufficiently small, whence using (4.10) 1,,=0.

5. THE CASE a>1
Suppose A is periodic in s and a > 1. In this case the plate thickness varies on a scale
much smaller than the mean thickness.
The following notation will be used in this section and in the appendix. If ¢ = (), ¢,)
is a function of # = (n,, n,), we define

£ =3+ 52
2«;(4’) = Buﬁr&£76(¢)' G-D
We denote by Q(x; &) the rescaled slice of the periodic “plate” at height x, = ¢&:
Q(x; &) = {n:[¢| <h(x;m)}; (5.2)
v will denote the outward unit vector normal to 3Q in the (n,, ;) plane. Let
=y 188
and let 6 be area fraction of the slice
8(x; &) = Mg p)- (54)

If g(x; n; &) is defined for y e Q(x, £) and is y-periodic, we denote its average over a slice
by

g §)=00x; &) Mgty 8): (5.5
provided that Q(x; &) # & (g s * & takes the same value as g when 4 €Q(x; ), and takes
the value O otherwise).

The ansatz for a > 1 depends on auxiliary functions ¥9(x; 5; ) (| <i,j <3, ¥Y=¥%).
They are periodic in #, defined for neQ(x; §), ]Cl < max, h(x; 1), and they satisfy

Lz 4=0 in o) 59
s
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with boundary conditions

T vp=— By, ondQ(x;$). 5.

By (2.5), ¥ 1* = ¥ = 0. A standard variational argument shows that ¢ exists and is unique
up to a rigid motion in . If Q(x; &) is connected this rigid motion is a function of x and
¢ only, but if Q(x, &) is disconnected it may include a linear function of g, possibly different
on each connected periodic component. The strain E,,(¥?) is, however, unique.

The ansatz (2.22) for this case is

u* = (~ x;0,w, — x;0,w, w) + €40, 0, g0, 5w + €' * (%, ., 0)0, g, (5.8)

where g*¥(x; &) and ¢*%(x; y; £) are defined by

¢ B+ By EA¥)
g"(x;f)=J‘ g2 e e T (x;t)de (5.9)
0 Byy+ By E.(0%)
af
o=~y + %&”. (5.10)

As usual, the right side of (5.8) must be evaluated at § = x/¢°, § = xy/e.
One computes that (2.23) holds with

X = ~ (5% + E, (¢%)

Xt =0 (5.1D
g 8"

X3§ - "gg’s

where %% is defined by (2.38). Substitution of (5.11) into (2.26) yields a formula for
M 4,4(x); however, a simpler formula may be obtained as follows. Let

begs(X; &) = 08,,,[6% + E, (4oL + E,(4™)]
bops(x; ) = 08,05 + E, (¥*) (5.12)

s

bypy(x; &) = 0[Byysy + By Er (¥ )]
We see from (5.9) that

g
"g"g = fbam/bsszsv (543}

and from (5.10), (5.11) that

b,
xg=—e[ o+ B0 - 12,07 |
330
xﬁ = fb«m/ b3333-
By (5.6), (5.7) and Green’s formula,
BME;»W Q)Ea;(ﬁ H) = - prfpe(wf)- . 1 5)
Substituting (5.14) into (2.26) and using (5.12), (5.15), one obtains

(5.14)

M ps(x) = f (EPbpslx; ) dE, (5.16)
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where the domain of integration is Ié[ < max,h(x; n), and

' baﬁ33b7633_

baﬂ-,'é = baﬂré - (5 1 7)

b3333

Formulas (5.16) and (5.17) are precisely what one obtains by ‘“‘homogenizing the plate
boundary” first, then using Kirchhoff plate theory, A full explanation of what this means
is given in the appendix.

The tensor M,;,; is once again positive definite: if #,5 is any 2 x 2 symmetric tensor and
M p5t0pt,5 = 0, then X;’t,,,= 0, by (2.30). It follows from (5.14) that

bapystep =0

(5.18)
E/’.y(w aﬁtaﬂ) == ti.p-
Since Q(x; &) is connected for sufficiently small |€|, (5.18) and the periodicity of y* imply
that 1, =0.

If the plate cross-section at height ¢ is solid, i.e. if Q(x; &) = R? then each y¥(x; 5; &)
is independent of , and b',,,,(x; ¢ = §,M. These cross-sections make the same contribution
in (5.16) as in (2.39); in particular, (5.16) coincides with (2.39) when 4 is independent of
n. If, on the other hand, -the cross-section at height ¢ is totally disconnected—in other
words, if Q(x; &) consists of islands, each contained in a single period cell—then each y*
is linear in . In this case bgs(X; ) = by(x; £) =0, and hence E,,,,‘,(x; £)=20. Such
cross-sections contribute nothing in (5.16).

6. QUASIPERIODIC STRUCTURE
If #i(x; ) is quasiperiodic in #, i.e. if (2.13b) holds, then it is in general not possible
to construct an asymptotic expansion for u* in powers of ¢. However, one can obtain the
rigidity tensor M,4,4(x) for this case by a continuity argument based on the periodic one.

This procedure is supported by mathematically rigorous analyses of related
problems[22, 24].

Given data

xy,... ,aNER2
o 6.1)
Hy(1,, ..., ty) periodic in each ¢;,

we shall define a tensor
Mops = Myp(Hy @y, . . ., ap).
M 5,5 represents the rigidity tensor of the quasiperiodic plate with rescaled thickness
ho(n) = Hoa, "9, ..., oy n),  =Xx/e; 6.2)

its definition is different depending on whether a < 1, a = 1, or a > 1. The tensor M ,;(x)
corresponding to (2.13b) is then obtained by taking

Ho(ll,...,IN)=H(X;1,,...,IN), a,-=¢,(x), lSlSN.

Suppose first that all the vectors a; have rational coordinates, and let p be the least
common multiple of the denominators; then /(y), defined by (6.2), is periodic with period
p in n, and n;. The formulas of Sections 3-5 still apply in this p-periodic context. In
particular, (3.2), (4.3)-(4.4), and (5.6)-(5.7) have solutions that are periodic in # with
period p; and M, is defined by (3.7), (4.9), or (5.12)-(5.17).

This procedure defines M, (Hy @, ..., ay) only for rational vectors a;. The results,
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however, depend continuously on a;; therefore it makes sense to define

Mg (Hyay, ..., 0y) = },l_r}l Mg s(Ho By ..., By)

B; rational

in the general case.

This approximation procedure may be avoided in N =2 and a; L «,; that case arises,
for example, in modeling a plate with two orthogonal families of stiffeners. One may
arrange that a, = (c, 0) and a, = (0, d) by performing a rotation of the coordinate axes; then
the thickness A, is periodic, with periods |c|~' and |d|~' in n, and , respectively, and so
are all the auxiliary functions.

7. EXAMPLE: ONE FAMILY OF STIFFENERS

The different scalings a < 1, a = 1, and a > 1 generally yield very different results for
the effective rigidity tensor M,,,. An instructive example is provided by a single family
of rectangular stiffeners, which we model by choosing h = A(n,) as in Fig. 1: k is periodic
with period 1, taking two values 4, < h,, and

i
p,.=meas{n,:|ry,|<§, h(n)=h}, i=1,2.

We restrict our attention to the case of an isotropic material, so that Hooke’s law is given
by (2.8).

For a < 1, the case of *“slow” thickness variation, the relevant auxiliary functions ¢
are defined by (3.2). One finds that ¢'>=0,

a2¢ll
2

-a'n—= '-l-!-(.'/h3
1
62 2
ag’,z = v(=1+c/h)

where c is the harmonic mean of A’
¢ = (™ + mhy )
Denoting by m the arithmetic mean
m = pwh? + why’,

the nonzero components of M, for this case are

o 2 E vy 2 2 Ev?
Miil =375 Miai=3Bm+375¢
2 Ev
Mg = M3l =3¢ (7.1)
M =Ma<I=M¢<l=M =___E___m
1212 2112 1221 2121 3(1 +V)

For a > 1, the case of *“rapid variation™, the auxiliary functions ¥ solve (5.6), (5.7)
on the “slice at height £”, Q(&). If |¢| < 4, then ¥ V= 0; if h, < |¢| < h,, then ¢ ¥ is a linear
function of n, and the nonzero components of E,,(y") are

Eu(wu)= -1 En(*u)"-' —v/(1 —v)
E\w™)=—v/(1-v) Ey¥¢")=EW"?)= -}
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hy
I
h
l1
» Y -+ vy {
Fig. 1
The nonzero components of M, are
2 E 2 2 Ev?
Mf,>“'=§]_v2 ’ M§2>22|=§Em '3‘1__‘,2}113
2 Ev
M‘l'rzzl = M‘h’,,‘ = 3—1—““,‘2h|3 (7.2)
a>1 a>l1 a>1 a>1 E 3
Mij, =M5, = Mg = M55 = 31 +v) 1

in this case.
For the intermediate scaling a = 1, the auxiliary functions ¢'', ¢%, and ¢'*= ¢ are
defined by (4.3), (4.4). One verifies that

where ¢*=(¢41,0,43%), and (¢%, ¢3) solves a plane strain elasticity problem on the
stiffener cross-section

1
{msm):im| <z, |m| < h(m)}.
2

The function ¢'? = (0, ¢,"2, 0) solves a problem of antiplane shear, which is easily reduced
to Laplace’s equation for ¢,'? on the same two-dimensional domain. By (4.8), (4.9), the
dependence of M,4; on these auxiliary functions involves only the energies

=M [IZU(? YEL$*) dq,]

le = I[J’ZU((P IZ)E¢? l2) d’h]’

in terms of which

2 E E \
a=1 _ = —_ *
Mii 31—-v2m (l—vz)a

ae1 2 Ev Ev \?
2ml=§1—v’m_<l—v2)6‘

am1 am1 2 Ev Ezv . (73)
= M =3~

a=] am=| a=| a=1 1 E 12
Mij, =M =Mig =Mj3 =s——m — &2

3T+



A new model for thin plates with rapidly varying thickness 347

We used the FEARS finite element code, developed at the University of Maryland, to
compute ¢* and ¢'? for four choices of h,, h,, u, y;, using E =1.0 and v =0.25. The
geometries were selected to have the same total volume. Table | gives the computed values
of the energies, and Tables 2(a-d) compare the values of M, corresponding to the
scalingga<l,a=1,and a > I.

Table 1. £=1.0, v =0.25

h, h, Hy vy E* 12
a) 1/3 2/3 1/2 1/2 .077 .027
b) 1/3 1 3/4 1/4 .149 .062
c) 1/4 3/4 1/2 1/2 .124 .047
d) 1/4 5/4 3/4 1/4 .302 .127

Table 2(a). Ay =} hy=% =4 p, =}

a <1 w =1 a > 1
M1y .oLT .031 .026
Mi122 .012 .008 .007
Mypoa 114 .113 .113
Mo12 .04l .017 .010

Table 2(b). A, = hy=1, =3 uy=

1
4

a <1 a =1 a > 1
M1y ,035 ,028 .026
Mii02 .009 .007 .007
Mpono .187 .187 .187
Mioy2 .07k .012 .010

Table 2(c). hy=4, hy=} p, =4 =1

a <1 a =1 a > 1
M1111 .021 L014 .011
M1122 . 005 .004 .003
M2222 J1hT b7 .17
Mio1o .058 011 .00

Table 2(d). by =1 by=i uy=3 =1

a <1 a = 1 a > 1
Mllll . 015 012 ,011
)12 .004 .003 .003
Maono .334 .334 .33b

Myoyp .133 .006 .00k
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It is natural to ask which scaling produces the strongest structure. We can show that
M:ﬂ:; taﬂtv‘s < M:ﬁ-'ldl ’uﬁtvé (743)

for symmetric tensors 1,5, whenever h = h(y,); in other words, for a single family of
stiffeners with given geometry, the a = 1 plate is stronger than the a > 1 plate. The proof
of (7.4a) involves a variational characterization of Mgz/ and My;); it is valid for the
general anisotropic Hooke's law (2.5).

Comparing the @ = 1 and a < 1 scalings is more difficult. We conjecture that

Mg tagtis < Mg tugl,s (7.4b)

if h = h(n,), for the isotropic Hooke’s law (2.8); in other words, we believe that the a < ]
plate is the strongest in this context. The data in Tables 2(a—d) support this conjecture.
(They are slightly in violation of the condition

(M3 — M5 < (Mi5) — MG (M35 — M53)),
but this is due to round-off errors.) Another supporting observation is the inequality
M:ﬁ>~,'6l tuﬂtyé S M:ﬁf/él taﬂtyé

for h = h(n,) as in Fig. 1, which is a consequence of (7.1) and (7.2).

Relation (7.4b) does not extend to the anisotropic case: it is false for some elastic
materials and some choices of & = h(n,). We expect (7.4a) to fail as well, for more
complicated geometries A(n,, n,). Thus in general the relative strength of thea < 1,a =1,
and « > | plates depends on the underlying elastic material, and on the specific form of
the thickness variation. These issues will be addressed further in forthcoming article.
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APPENDIX
Homogenizing a rough boundary
We explain here the sense in which (5.12)~(5.17) correspond to “homogenizing the rough boundary then using
standard plate theory.”
The phrase “homogenizing the boundary™ refers to the following construction[7). For A(x; 5) periodic in g,
let #(¢) denote the ¢-dependent domain in R?

R(e) = {x:|x;| < h(x; x/e), xe} (A1)
with upper and lower faces 3, %(c). If & is continuous then
0,Re) = {x:x;= L h(x; x/e), xeQ}; (A2

if i has discontinuities then 3, 9(c) have vertical regions accordingly. We denote by u* the solution of the elastic
cquilibrium problem

dfo,wN=0 in () (A3)

=1,
o= {}) + (% X/€) jny| : =3 Zon 0:9e) (A4)
¥=0 on {x:xedf, |x;| < h(x; x/e)}. (AS)

The method of Section 2(d) can be applied to describe y* as ¢ —+0. We use the same notation as in Section
5. The appropriate ansatz is

U~ ut = w(x) + g Y xfe; xi)ey(w) (A6)

§S Vol. 20, No. 4-D
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where ¥¥ = (7, ¢,%) is defined by (5.6), (5.7), and ¥, %(x; #; £) solves

é ( é
—| B ¥ | =0 in g(x; §)
F! 2383 3 )
Na Ju a’?n ( A7)
B W Vo= = BuJy": on 9Q(x; {).
8
By (2.5), only ¥," and ¢, arc nontrivial.
Onc computes that
e, (u*) = XN, xje; xe dw) + olc),
with X;’(x;q; £) given by
XY = 0% + E 9"
i awakl
XH o= GH g 23
a3 = 03 + 2 on, (A8)
Xt = 84,
The effective equation for w(x) is determined by the variational principle
1 .
m:n 3 jl Uofx;n)squ?;x“ i(Wlew)dx — J.W; ‘F dx (A9)

in which #(x,, x,, x,) is the mean force per unit projected area applied at height x,; both integrals are over xef,
|x,| < max, h(x; 9); and w is constrained by the analogue of (A5). It follows that w satisfies the equations of
clastostz tic equilibrium corresponding to an inhomogeneous “effective medium™ with moduli

badx; xy) = .II[IW;,”B,,"XS,X;’,]. {A10)
One verifies that the functions b,s,, by, and by, defined by (A10) are the same as those in Section 5.
The thesis of Brizzi and Chalot[7] shows for a related problem that u‘ — u* converges to zero in energy, if

h = h(y) does not depend on x and satisfies certain geometric hypotheses. See also[22] for a related resuit.
Now we apply Kirchhoff plate theory to an inhomogeneous plate with elastic moduli

By fx) = bufx; x,/c)
and slowly-varying thickness
)] < € - maxg hix; 7).
The ansatz (2.37) must be replaced by
u* = (—xy8w, —Xy3w, w + Cg(x; x,/0 )3 5w), {AlD

where

¢
g%(x; &) wJ. £ 28 (0.1 d.
0 b3333

Repeating the steps of Scction 2(e), one is led to formula (5.16).



